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ABSTRACT Assessing respiratory mechanics and muscle function is critical for both clinical practice and
research purposes. Several methodological developments over the past two decades have enhanced our
understanding of respiratory muscle function and responses to interventions across the spectrum of health
and disease. They are especially useful in diagnosing, phenotyping and assessing treatment efficacy in
patients with respiratory symptoms and neuromuscular diseases. Considerable research has been
undertaken over the past 17 years, since the publication of the previous American Thoracic Society (ATS)/
European Respiratory Society (ERS) statement on respiratory muscle testing in 2002. Key advances have
been made in the field of mechanics of breathing, respiratory muscle neurophysiology (electromyography,
electroencephalography and transcranial magnetic stimulation) and on respiratory muscle imaging
(ultrasound, optoelectronic plethysmography and structured light plethysmography). Accordingly, this ERS
task force reviewed the field of respiratory muscle testing in health and disease, with particular reference to
data obtained since the previous ATS/ERS statement. It summarises the most recent scientific and
methodological developments regarding respiratory mechanics and respiratory muscle assessment by
addressing the validity, precision, reproducibility, prognostic value and responsiveness to interventions of
various methods. A particular emphasis is placed on assessment during exercise, which is a useful
condition to stress the respiratory system.
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Introduction
Assessing respiratory mechanics and respiratory muscle structure and function is an essential component
of both clinical practice and research. It is especially useful in patients with respiratory symptoms and
neuromuscular diseases (NMDs), contributing to diagnosis, patient phenotyping, assessment of treatment
efficiency and patient follow-up. The American Thoracic Society (ATS) and the European Respiratory
Society (ERS) published a statement on respiratory muscle testing in 2002, reviewing the rationale and
technical characteristics of the main methods available [1]. Nearly two decades later, given the large
amount of novel research in the field, the chairs of the present task force felt a need to summarise the
latest knowledge on respiratory mechanics and muscle assessment both for clinicians and researchers.
Since 2002, key advances have been made in the field of mechanics of breathing, respiratory muscle
neurophysiology, and respiratory muscle imaging in health and disease, including in paediatrics and
critically ill patients in the intensive care unit (ICU). A specific focus of the task force has been the
assessment of respirator muscles and mechanics during exercise, a situation stressing the respiratory
system and thus allowing the evaluation of respiratory muscle response to increased ventilatory demand.

Methods
The task force was formed in June 2016, composed of experts from the ERS Clinical Respiratory Physiology,
Exercise and Functional Imaging Group (04.01), the ERS Rehabilitation and Chronic Care Group (01.02),
the Physiotherapists Group (09.02), and representatives from the European Lung Foundation and the ERS
Science Council. The task force received support from ERS methodologists throughout the project. Three
meetings of the task force were held; two during the annual congress of the ERS (September 2016 and 2017)
and one in Lausanne in March 2017. All task force members signed conflict of interest disclosures at the
beginning of the project and updated them at project finalisation or when any new relevant conflict of
interest appeared. Conflicts of interest were managed according to ERS rules.

Studies that reported the evaluation of respiratory muscles (inspiratory and expiratory) and upper airway
muscles at rest or during exercise in adults and children with cardiorespiratory diseases were reviewed,
without restrictions on study design. MEDLINE and Cochrane Library records from 1970 to 2017 were
searched. Selected references considered to be of particular relevance were included up to June 2018.
Reference lists of all primary studies and review articles were examined for additional citations. Only
studies written in English, or for which an English translation was available, were consulted. Studies were
included that refer (singly or in combination) to reported validity (i.e. the extent to which a test or
variable is related to the function of a physiological system or to patient-meaningful variables, such as
symptoms or exercise), precision or reproducibility, prognostic information (i.e. relationship with the
natural history of the disease), discrimination (i.e. whether a variable can differentiate the severity of the
disease as conventionally measured), clinical meaningful difference (i.e. the minimal difference in a tested
variable that is considered to be functionally worthwhile or clinically important), or test response to
interventions. Studies that did not meet the inclusion criteria based on title or abstract were excluded.
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Studies that met the inclusion criteria were retrieved in full text to determine whether they were suitable
for inclusion. For each section, the articles selected by the primary task force author had to be approved
by a second author with expertise in the field. Disagreements, if any arose, were resolved by consensus.
The reader is advised and encouraged throughout the text to refer to the 2002 statement for the scientific
basis and classical methodological approach of respiratory muscle function.

Of note, this statement contains additional information on respiratory muscle evaluation in two particular
settings, of paediatrics and the ICU; due to manuscript constraints, these two settings are confined
quasi-exclusively to the supplementary material, along with more technical and methodological details
concerning each section of the article.

Section 1. Respiratory muscle function
1.1. Airway opening, oesophageal and gastric pressures: technical considerations
1.1.1. Pressure measurement
Respiratory muscles have two distinct functions: force development (pressure changes) and shortening
(lung volume changes). Several key points must be considered [1]:

1) Pressures reflect barometric pressure difference.
2) In unaltered physiology/anatomy, specific pressures represent entire corresponding spaces. Gravity/

shear-stress affects pressure readings [2]. Figure 1 indicates pressure recording sites.
3) Pressure differences are assessed across corresponding structures. Table 1 lists thoracic pressure

readings.
4) Pressure differences between two points reflect difference across at least two (group of) structures

(e.g. chest wall/pleural cavity).
5) Pressure measurement reflects global muscle “output” (rather than contractile property per se).
6) Assessment occurs via voluntary manoeuvres or via evoked contractions (see below).

1.1.2. Pressure assessment devices
1.1.2.1. Pressure transducers
Frequency response flat up to 10–15 Hz assesses dynamic/static pressures [1]. Transducers should be
calibrated in specific settings, since attached systems (e.g. catheters) alter frequency responses [3]. One
should ensure identical frequency responses on both sides (differential transducers) [1]. Digital calibration
is acceptable; however, a check via water manometer should be done regularly [1]. Pressure range should
be ±300 cmH2O and resolution ⩽0.5 cmH2O [1].

FIGURE 1 Pressure recording sites.
Abw: abdominal wall; aw: airway;
Di: diaphragm; Eq: equipment; Lt:
lung tissue; Pab: abdominal
pressure; Palv: alveolar pressure;
Pao: pressure at airway opening;
Pbs: body surface pressure; Ppl:
pleural pressure; rc: ribcage.
Reproduced with permission of the
publisher [1].
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1.1.2.2. Probes for invasive pressure assessment
Air-filled balloon catheters are used to record oesophageal (Poes, ∼pleural pressure) and gastric pressure
(Pga, ∼abdominal pressure) [4]. Specific characteristics need to be considered and standardised preparation
is required [1, 5]. Certain catheters additionally allow diaphragmatic electromyography (EMG) [1].

Repeated checking of air filling volumes and entire system volume displacement coefficient guarantees
adequate balloon inflation [1, 5].

Appropriate system frequency responses (e.g. catheter diameter) are crucial for dynamic manoeuvres with
high pressure changing rates (e.g. sniffs/twitches) [1]. Important characteristics include reasonable stiffness
and several spirally arranged catheter holes at balloon portion, to avoid dampened signals [1, 5].

Liquid-filled catheters and catheter-mounted microtransducers have drawbacks (e.g. damped pressure
signal in oesophagus/stomach or wide limits of agreement) and are not used in this setting [1, 6].

1.1.2.3. Devices for measurement of airway opening pressure
Airway opening pressure (Pao) is usually sampled from side taps (“lateral pressure”) located in the
mouthpiece/tracheal tube/facemask/nostril plug [1, 7]. Nasal pressure reflects airway pressure only during
undisturbed communication between nostrils/mouth with nasal flows [1]. The device to which the side tap
is connected must have a cross-sectional area large enough to minimise the Bernoulli effect [8].

For Pao to estimate alveolar pressure during dynamic respiratory efforts against an occluded airway, alveolar–
oral pressure transmission must be fast [1]. The transmission time constant depends on airway resistance
and compliance of extrathoracic airways (i.e. mouth/cheeks/equipment) [1]. This is especially important
when airway resistance increases (e.g. asthma, chronic obstructive pulmonary disease (COPD)) [1].

1.2. Voluntary tests of respiratory muscle strength
1.2.1. Maximal static inspiratory and expiratory mouth pressure
Measurements of maximum static inspiratory (PImax) or expiratory (PEmax) pressures at the mouth allow a
simple assessment of global respiratory muscle strength in a clinical setting [1]. Tests are volitional and
require full subject cooperation. PImax is usually measured at residual volume and PEmax at total lung
capacity (TLC) to record the maximum value of three manoeuvres that vary by less than 10% (more
details can be found in the supplementary material). Measuring PImax at functional residual capacity
(FRC) has the advantage of representing the maximal static inspiratory pressure measured at the lung
volume at which patients breathe tidally; however, it is greatly influenced by the level of lung
hyperinflation or the severity of restriction, so careful attention should be paid under these conditions.

TABLE 1 Thoracic pressure readings

Pressures at a location
Pao (airway opening pressure)
Palv (alveolar pressure)
Ppl (pleural pressure)
Pab (abdominal pressure)
Pbs (body surface pressure)

Pressure differences across structures
Pel(L) (elastic recoil pressure of the lung (pressure across lung tissue))
PL (transpulmonary pressure)
Prc (pressure across the rib cage)
Paw (flow-resistive pressure in airways)
Pcw (pressure across the chest wall)
Pdi (transdiaphragmatic pressure)
Prs (transrespiratory system pressure)
Pabw (transabdominal wall pressure)
Peq (pressure across the equipment)

Relationship among pressures
Paw ¼ Pao � Palv

Pel(L) ¼ Palv � Ppl

�
¼ PL ¼ Pao � Ppl

Prc ¼ Ppl � Pbs ¼
Pdi ¼ Ppl � Pab

Pabw ¼ Pab � Pbs

�
¼

9=
;Pcw ¼ Ppl � Pbs

9>>>>>=
>>>>>;
Prs ¼ Pao � Pbs ¼ �Peq
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PImax is strongly related to exertional dyspnoea (figure S4) [9]. The test might also serve as a screening
instrument to identify patients with respiratory muscle weakness (figure 2, and supplementary material)
[10]. Results should not be interpreted in isolation but together with the overall clinical picture (pathology,
symptoms, and load/capacity balance during daily activities). The test is responsive to evaluate changes
within subjects. Characteristics of studies that provide reference values for PImax and PEmax measurements
are summarised in the supplementary tables S2–S8 [11]. Measurements of mouth pressures are also used
in cooperative children older than 6–8 years of age (table S14), and to evaluate muscle strength in the ICU
(supplementary material).

1.2.2. Maximal sniff nasal inspiratory pressure
During measurement of maximal sniff nasal inspiratory pressure (SNIP), inspiratory pressure is recorded
by a pressure transducer connected to a catheter placed in the nostril [12]. The test is performed at FRC.
The subject is instructed to sniff quickly and deeply. SNIP has been validated in healthy individuals [12]
and patients with COPD [13], and is also very useful for children >2 years of age [14]. Precision is good in
healthy subjects without severe nasal congestion. Even in COPD there is good repeatability [13]. More
information including normative values is presented in supplementary table S9.

1.2.3. Peak cough flow
Peak cough flow (PCF) estimates the effectiveness of mucus clearance and expiratory muscle function in
neuromuscular disorders [15, 16]. The measurement is performed with subjects seated. An oronasal mask/
mouthpiece is connected to a pneumotachograph or peak flow meter. Subjects are instructed to perform a
maximal cough after complete inhalation [17]. They should perform 3–6 manoeuvres (<5% variability)
and the maximum PCF (L·min−1) should be reported [17]. In NMDs, (manually) assisted PCF might be
appropriate [18]. Hand-held peak flow meter devices might overestimate PCF if spirometer recordings of
PCF are <270 L·min−1 [17].

PCF informs the need to start manual/mechanical exsufflator/insufflator therapy because PCF
<270 L·min−1 is associated with higher likelihood of pulmonary complications in neuromuscular disorders
[17]. Healthy (children) adults achieve PCF measurements of approximately (150) 470–600 L·min−1; PCF
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FIGURE 2 Expert opinion on the suspicion of diaphragmatic dysfunction. The figure describes the current practice of how the members of the task
force suspect and treat respiratory muscle dysfunction (especially for unilateral and bilateral diaphragm weakness), outside of the intensive care
setting (this is, however, not intended as a recommendation for clinical practice). In the absence of clearly defined lower limits of normal, it has
long been accepted that a PImax or sniff-Pdi or Pdimax ⩾80 cmH2O in men and ⩾70 cmH2O in women, and/or SNIP ⩾70 cmH2O in men and
⩾60 cmH2O in women are generally thought to exclude clinically significant inspiratory muscle weakness [1], and unilateral and bilateral
diaphragm paralysis can be expected to decrease PImax or SNIP in the ranges of 60% [41] and <30% [42] of the predicted values, respectively.
However, these values may be greatly impacted by the presence of underlying obstructive or restrictive lung disease [40]. A Pdi,tw >10 cmH2O with
unilateral phrenic nerve stimulation or >20 cmH2O with bilateral phrenic nerve stimulation also rules out clinically significant weakness [1].
Please refer to the text for more details. SNIP: sniff nasal inspiratory pressure; VC: vital capacity; PImax: maximal inspiratory pressure; TF: thickening
fraction of the diaphragm; PSG: polysomnography; CPAP: continuous positive airway pressure; Pdi: transdiaphragmatic pressure; Pdi,tw: twitch
transdiaphragmatic pressure; NPPV: noninvasive positive pressure ventilation; PaCO2: arterial partial pressure of carbon dioxide; SpO2: peripheral
oxygen saturation.
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<160 L·min−1 is associated with higher likelihood of extubation/weaning failure in neuromuscular
disorders (more details can be found in the supplementary material) [17, 19].

1.3. Voluntary manoeuvres with oesophageal and gastric pressures
Measurements of Poes, Pga and transdiaphragmatic pressure (Pdi=Pga−Poes) while sniffing and coughing are
useful when noninvasive measures of in- and expiratory muscle function (e.g. SNIP or PCF) provide
equivocal information. Assessments during sniff are particularly useful when SNIP yields suspiciously low
values, e.g. in patients with upper airway obstruction (hypertrophy of the adenoids, rhinitis, polyps) or
lower airway obstruction. Assessments during cough are needed to assess the expiratory muscles when
glottis function is compromised, for example in patients with bulbar amyotrophic lateral sclerosis (ALS).
These measurements may also be used to refine clinical diagnosis [20, 21]. Maximal muscle relaxation rate
(MRR) can provide additional information on respiratory muscle function [22, 23] but its clinical
application is limited. Measurements of Poes and Pga during voluntary manoeuvres can also be obtained in
the ICU and in children (supplementary material).

In adults, the average within-subject, between-occasion coefficient of variation (CV) is 11% for sniff-Pdi [24]
and 6.9% for cough-Pga (table 2) [21]. No such values are available for children. For sniff-MRR,
within-subject and between-occasion CVs range from 6 to 26% [25].

Reference values are given in table 2 where available.

In many diseases, pressures produced during sniff and cough are less than normal, both in adult patients
(e.g. heart failure [26], stroke [27], COPD [25], pulmonary fibrosis [25], cystic fibrosis [28] and NMDs
[20, 21, 29]) and in children with NMDs [30, 31]. In a cohort of patients with mixed diagnoses [20],
adding SNIP to PImax reduced the false-positive diagnosis of inspiratory muscle weakness by 20% (with
sniff-Pdi not adding more diagnosis accuracy). Adding cough-Pga to PEmax decreased false-positive
diagnosis of expiratory muscle weakness by 30% [20].

The use of sniff-Pdi and cough-Pga has not been widely explored for prognosis. In ALS patients, sniff-Pdi
correlated with SNIP [32] and SNIP <40 cmH2O was associated with desaturation during sleep; hazard
ratio for death was 9.1. Sniff-Pdi, sniff-Poes and twitch Pdi (Pdi,tw, see below) were significant predictors of
ventilation-free survival in ALS patients [33], while PEmax and transdiaphragmatic pressure elicited by
phrenic nerve stimulation (Pdi,tw) were predictors of absolute survival.

After lung volume reduction surgery [34], sniff-Pdi, SNIP and PImax increased significantly, while 8 weeks
of rehabilitation did not add any further improvement [34].

In COPD, after exhaustive treadmill walking, sniff-Poes did not change significantly; sniff-Poes-MRR
decreased by 42%, and recovered within 5 min of rest [35].

1.4. Respiratory muscle-related mechanics of breathing
1.4.1. Lung function testing
Pulmonary function tests, especially measurements of upright and supine vital capacity (VC), which
depends on activation of both inspiratory and expiratory muscles [36], are noninvasive and readily
available measurements contributing to the evaluation of respiratory muscle function, especially the
diaphragm [36–39]. Unilateral diaphragm weakness is usually associated with a modest decrease in VC, to
approximately 75% of predicted [40, 41], with a further 10–20% decrease in the supine position (15%
which represents twice the CV of the measure could be considered the lower limit of normal) (figure 2)
[41], while FRC and TLC are usually preserved [40, 41]. In severe bilateral diaphragm weakness, VC is
usually 50% of predicted and can further decrease by 30% or more when supine [42]. A normal supine
VC makes the presence of clinically significant diaphragmatic weakness unlikely.

TLC can also be reduced (70–79% of the predicted value with mild weakness, up to 30–50% of the
predicted value in moderate-to-severe weakness), while residual volume can be elevated [43]. Of note, in
patients with diaphragm weakness, the magnitude of fall in VC in the supine position correlates with the
reduction in sniff-Pdi [43].

In many NMDs [44–50], such as ALS, a significant reduction of VC at diagnosis, as well as its rate of
decline over time, are recognised as criteria for initiating noninvasive ventilation [51, 52]. Reduction in VC
is also predictive of sleep disordered breathing, respiratory failure, worse prognosis and response to
treatment, to a lesser extent, with good sensitivity (80–95%) but quite variable specificity (50–90%) [53].

1.4.2. Indices of respiratory muscle effort
The pressure output of the respiratory muscles can be assessed by calculating 1) the work of breathing
(WOB), 2) the pressure–time product (PTP) of either the oesophageal pressure (PTPoes; reflecting
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TABLE 2 Characteristics of the main voluntary and evoked manoeuvres to assess respiratory muscle strength

Tests Main
variables

Reference values and
discriminative values

Repeatability/reliability/validity Cautions Setting (expert centres,
general clinical use,
research, etc.)

Remarks

Voluntary
manoeuvres
with mouth
pressure

PImax Yes (tables S2–S4) Sufficiently repeatable and reliable
measurements in untrained subjects
(<10% variability between efforts) can
usually be obtained within 5 efforts
[297]. Peak values are typically
reached after 9 attempts [298].

Standardisation of lung volumes,
mouthpiece and recorded pressure
(peak versus plateau) required.

SNIP and mouth
pressures can be used
in clinical practice
after thorough training
of the procedures.

Always to be interpreted in
clinical context of symptoms
and diagnosis.

PEmax Yes (tables S5 and S6) Reliable peak values usually achieved
after 5–6 efforts. Within subject
between occasion coefficient of
variation around 10% [21].

Standardisation of lung volumes,
mouthpiece and recorded pressure
(peak versus plateau) required.

Always to be interpreted in
clinical context of symptoms
and diagnosis.

SNIP Yes (table S9) Yes. Possibly fewer efforts needed for
acceptably reliable measurements in
comparison to PImax in untrained
subjects [12, 13, 20, 299, 300].

Cautions in subjects with severe nasal
congestion.

Although SNIP and PImax has a good
correlation, the agreement between
these two methods is variable. Thus,
they are complementary and not
interchangeable in the evaluation of
inspiratory weakness

SNIP in association with
PImax reduces the
false-positive diagnosis
of inspiratory
weakness by nearly
20% [5].

Should be used as a
complementary variable (i.e.
in addition to a first screening
with mouth pressures) to
investigate inspiratory
weakness.
Always use the reference
values of your population
when available.

PCF Healthy subjects:
468–588 L·min−1 [301]

Increased extubation/weaning
failure <160 L·min−1 in
NMD patients [302]

No sufficient data available. At least 3–6 PCF with <5% variability need
to be assessed [17]

Simple to assess.
Especially useful in
NMD patients.

No direct link between “cut-off”
values and clinical
consequences (e.g. cough
assist).

Voluntary
manoeuvres
with
oesophageal and
gastric
pressures

Be careful with dose of local
anaesthesia.

Sniff No normal values exist;
mean±SD (range) achieved
by healthy subjects:
Pdi (37 M): 148±24
(111–124, 126–204) cmH2O
[303]
Pdi (27 F): 122±25 (82–182)
cmH2O [303]
Pdi (64): 136±37 (82–204)
cmH2O [303]
Pdi (32): 134±24 (86–195)
cmH2O [24]
Poes (37 M): 105±26
(52–150) cmH2O [303]
Poes (27 F): 92±22 (52–140)
cmH2O [303]

CV-Pdi (healthy adults): 11% [24] NA Expert centre research SNIP/sniff-Poes (children):
CF 0.72±0.13 [28]
NMD patients 0.83±0.17 [28]
Thoracic scoliosis 0.86±0.10
[28]

3-year ventilator-free survival in
ALS patients: sniff-Pdi cut-off
108.5 cmH2O (sensitivity 0.85,
specificity 0.98) [33]

Continued
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TABLE 2 Continued

Tests Main
variables

Reference values and
discriminative values

Repeatability/reliability/validity Cautions Setting (expert centres,
general clinical use,
research, etc.)

Remarks

Poes (64): 100±25 (52–150)
cmH2O [303]
Poes (12) 93±27 cmH2O [28]
Pga (37 M): 43±32 (0–134)
cmH2O [303]
Pga (27 F): 29±29 (0–108)
cmH2O [303]
Pga (64): 37±31 (0–134)
cmH2O [303]

Cough Normal values [21]:
Pga (62 M): 214±42 cmH2O
Pga (37 F): 165±35 cmH2O
Lower limits of normal
[21]: 132 cmH2O (62 M),
97 cmH2O (37 F)

CV-Pga (healthy adults): 6.9% [21] NA Expert centre research Cough-Pga assessment is helpful
for patients with low PEmax to
avoid false-positive diagnosis
of expiratory muscle
weakness.

Evoked
manoeuvres

Pmo,tw Possible diaphragm weakness
Pmo,tw <−11 cmH2O
(cervical magnetic
stimulation)
Pmo,tw <−8 cmH2O (bilateral
electrical stimulation)

Pdi,tw Possible diaphragm weakness
Pdi,tw <15 cmH2O

PImax: maximal inspiratory pressure; PEmax: maximal expiratory pressure; SNIP: maximal sniff nasal inspiratory pressure; PCF: peak cough flow; NMD: neuromuscular disease; Poes:
oesophageal pressure; Pga: gastric pressure; Pdi: transdiaphragmatic pressure; Pmo: mouth pressure; Pdi,tw: twitch transdiaphragmatic pressure; Pmo,tw: twitch mouth pressure; ALS:
amyotrophic lateral sclerosis; CF: cystic fibrosis; M: male; F: female; CV: coefficient of variation; NA: not applicable.
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the effort done by all of the respiratory muscles), the transdiaphragmatic pressure (PTPdi; reflecting
mostly the effort done by the diaphragm) [54], 3) the tension-time index (TTI=PI/PImax×tI/ttot) or 4) the
Poes swing. Details on how these indices are calculated, their physiological underpinning, advantages and
disadvantages are described in the supplementary material. PTP analyses have been used as an alternative
to WOB to quantify respiratory muscle effort in both healthy subjects [55, 56] and patients with COPD
[57–59]. PTP is more closely related to respiratory muscle oxygen consumption than WOB [60]. The
average value for PTP in healthy subjects is around 100 cmH2O·s·min−1 while in acute respiratory failure,
the average PTP has been reported to be about four-fold greater [61]. During trials of weaning from
mechanical ventilation, PTPoes can predict weaning failure [61]. PTP is greater in COPD patients during
exercise compared with age- and sex-matched healthy controls [62].

In the clinical setting, inspiratory effort can be simply monitored by measuring tidal swings in Poes (Poes,tid)
(figure 3) [63]. Poes,tid can serve as an index of global respiratory muscle effort during exercise in patients
with chronic respiratory diseases [64]. Poes,tid can identify differences in disease severity between patients
with COPD (i.e. by Global Initiative for Chronic Obstructive Lung Disease stages) [65] and it is sensitive to
changes over time and to interventions [65]. Increases in Poes,tid relative to stable tidal volume responses are
related to the perception of dyspnoea during exercise [64, 66]. Poes,tid has been successfully applied as a
bedside monitoring tool in sleep studies [67], and during weaning trials [68]. Poes,tid (in analogy with the
PTPoes) showed larger changes over the course of a failed weaning trial than breathing pattern parameters
(rapid shallow breathing index) [61, 68].

Reduction of resistive and elastic load by continuous positive airway pressure or inspiratory pressure
support can reduce inspiratory effort. During exercise, these reductions in inspiratory effort decrease
exercise-associated dyspnoea and improve exercise tolerance in patients with COPD [57, 69]. Similar
results can be obtained using helium hyperoxia and bronchodilators [70]. It is difficult to establish a
minimal clinically important difference of indices of respiratory muscle effort, given the paucity and
heterogeneity of the studies. Nonetheless, a clinically meaningful difference of 14–16% from baseline
condition has been shown to correlate with a clinically meaningful reduction of exertional dyspnoea after
pharmacological intervention such as bronchodilators for both PTP and Poes,tid [71–73]. Finally, exercises
that promote slow and deep breathing have the potential to reduce the elastic component of WOB and
thereby reduce inspiratory effort [74–76]. In addition, changes in inspiratory duty cycle (decreased tI/ttot)
induced by these breathing techniques can further reduce PTP by reducing inspiratory time per minute [77].
Measurements of pressure during brief inspiratory occlusions (typically 0.1 s) applied without warning
before the individual recognises the occlusion and reacts (i.e. P0.1) can be a useful index of respiratory
centre motor output (supplementary material).

1.5. Evoked manoeuvres
Non-volitional evaluation of diaphragm (dys)function and fatigue (i.e. a reduction in the ability to produce
force/pressure following contractile activity) can be performed by phrenic nerve stimulation; diaphragm
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FIGURE 3 Tidal oesophageal pressure (Poes) swings are shown with varying severity of chronic obstructive
pulmonary disease and in age-matched healthy control subjects. As disease severity worsens, the amplitude
of inspiratory and expiratory Poes increases for a given ventilation during exercise. The shaded area
represents the tidal Poes swing in the healthy control subjects. Original data from the authors’ laboratory.
Values are means.
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contraction causes a sudden and short-lasting fall in Poes and a rise in Pga, the difference providing Pdi,tw.
Abdominal muscles can be evaluated by stimulation of thoracic nerve roots with measurement of gastric
pressure (Pga,tw).

Magnetic phrenic nerve stimulation has superseded electrical stimulation, except where patients have
pacemakers or other implanted electronic devices where magnetic stimulation is contraindicated. Technical
considerations during phrenic nerve stimulation include: 1) stimulation must be supramaximal,
2) potentiation resulting from prior contraction must be avoided or standardised, 3) lung volume must be
standardised, and 4) different magnetic stimulation techniques (e.g. cervical, bilateral anterior) yield
different results and should be used consistently. A noninvasive estimate of Pdi,tw can be obtained by
measuring pressure changes in the upper airway or the mouth (Pmo,tw) [78] although oesophageal twitch
pressure (Poes,tw) and thus Pmo,tw are more influenced by lung volume than Pdi,tw.

Resting values of Pga,tw have a slightly higher variability (CV 9–10%) than Pdi,tw (6%).

Age- and sex-specific normal values for adults are lacking, but a cut-off for Pdi,tw of 18 cmH2O has been
suggested for diagnosis of diaphragm weakness [20]. In healthy subjects, the mean between-occasion
variability in Pdi,tw is 20±11% and CV 11% [79]. The limit of agreement of the difference of Pdi,tw
recordings is ±6 cmH2O [79]. Variations in Pdi,tw with disease are shown in table 3.

Exhaustive exercise in healthy subjects can elicit a fall in Pdi,tw (showing diaphragm fatigue), while in a
variety of disease states exercise-induced diaphragm fatigue has been reported by some but not all
investigators (please refer to supplementary material for more details). Of note, diaphragm fatigue is
not necessarily related to exercise performance and development of fatigue may not predict clinical
outcomes [80].

Normal Pdi,tw values are available for neonates [81], infants [82] and children [83], in whom stimulation is
acceptable with local anaesthesia. In critically ill patients, measurement of Pao,tw and Pdi,tw can be
particularly useful and several large case series yielded Pao,tw or Pdi,tw values [84, 85] that are lower than
those recorded in healthy individuals (please refer to supplementary material for further details).

1.6. Respiratory muscle endurance testing
Different approaches can be used to assess respiratory muscle endurance: 1) incremental load testing,
2) constant load testing and 3) time trials. Different tests were developed within these categories: 1) a
stepwise load increase by increasing resistance/threshold load or minute ventilation, 2) sustaining a given
resistance/threshold load or hyperpnoea level to task failure and 3) time trial, where a maximum
ventilation (with/without additional resistance) must be achieved within a given duration. While resistive/
threshold loading tests mostly apply inspiratory loads [86], hyperpnoea tests load both inspiratory and
expiratory muscles [87].

Since test performance is influenced by breathing pattern, breathing frequency and tidal volume should be
controlled (feedback) and/or reported [88–90]. When testing pre/post-interventions, starting load/
ventilation and increments (if present) need to be identical.

TABLE 3 Summary of the main causes of perturbation in twitch transdiaphragmatic pressure (Pdi,tw)

Pdi,tw observation Partitioning Interpretation Consider

Pdi,tw ↑ Poes,tw ↑, Pga,tw ↑ • Strong patient
• Potentiated muscles

Pdi,tw ↓ Poes,tw ↓ Pga,tw ↓ • True weakness
• Submaximal stimulation (e.g. obesity)
• Medical comorbidities

• Neurological exam
• Is PImax/SNIP strong? (supports if so)
• Age [304], heart failure [305], pulmonary hypertension [306]

Pdi,tw ↓ Poes,tw ↓ Pga,tw ↔ • Hyperinflation • Review technique
• Investigate for COPD
• What is end-expiratory oesophageal pressure? (may reveal

intrinsic PEEP)
• Check air (in balloon catheter systems)

Poes,tw: oesophageal twitch pressure; Pga,tw: gastric twitch pressure; PImax: maximal inspiratory pressure; SNIP: sniff nasal inspiratory
pressure; COPD: chronic obstructive pulmonary diseases; PEEP: positive end-expiratory pressure.
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1.6.1. Maximal incremental load testing
Resistive/threshold testing requires subjects to breathe against a resistive/threshold [1, 89] or tapered
flow-resistive [86] load that is increased at regular intervals (minutes or number of breaths), e.g. by 10% of
baseline PImax until task failure. Inspiratory muscle endurance can be defined as the pressure of the last
completed step.

Hyperpnoea testing uses stepwise increasing minute ventilation (e.g. +8% of maximal voluntary ventilation
(MVV) every 3 min) [1]. It needs special equipment to assure normocapnia and has been increasingly
applied in recent years [90]. Ventilatory levels achieved in this test were found to be similar to levels
reached in the traditional maximal sustainable ventilation test [91, 92]. Normal values have been
established for healthy subjects [90].

1.6.2. Constant load testing
During resistive/threshold testing, subjects are instructed to breathe against a submaximal load [86, 88, 89]
until task failure. It has been proposed that the selected load should result in a time to task failure (tlim) of
5–10 min, such that post-intervention test durations can be limited to about 15–20 min without important
ceiling effects [86, 89]. Main outcomes are tlim and/or total external work performed during the test [86].
The pattern of breathing during such a test is important and must be taken into account when analysing
the data.

During hyperpnoea testing, subjects breathe at a constant ventilation (40–70% MVV) to achieve task
failure within 8–12 min.

1.6.3. Time trial
The 10–15 s MVV manoeuvre is too short-lasting for assessment of respiratory muscle endurance.
Different protocols exist for testing maximal sustainable ventilation, i.e. the ventilation that can be
sustained for a given, extended period of time (e.g. 12–15 min). However, there is no consensus on which
protocol to use for this kind of test [1].

The attraction of these different respiratory muscle endurance tests is that they provide a method for
evaluating global respiratory muscle endurance in a single test session. The tests are noninvasive and
relatively well-tolerated. Several studies showed large improvements in respiratory muscle endurance after
respiratory muscle training by using these tests (supplementary material).

Section 2. Respiratory muscle neurophysiology
Respiratory muscle neurophysiological testing includes 1) EMG to measure the output of the respiratory
motor neurons, 2) electroencephalography (EEG), which tests the involvement of motor and premotor
areas, and 3) transcranial magnetic stimulation (TMS) which assesses the neural pathways to the
respiratory muscles (figure 4).

2.1. Electromyography
EMG is the technique that quantifies the electrical activity of muscles and is used in research and clinical
practice to assess respiratory muscle control at rest and during exercise, including estimation of respiratory
motor output (as previously reviewed [93, 94]), neuromechanical coupling during loaded breathing [95]
and the efficacy of muscle contraction when coupled with measurements of ventilation [96, 97]. Finally,
EMG can also be used in the diagnosis of myopathic and neuropathic diseases [1]. A thorough review of
the theoretical background and methodology of respiratory EMG recordings is available [1].

Respiratory EMG can be recorded with surface electrodes, an oesophageal electrode inserted via the nose,
and intramuscular wire or needle electrodes. Appropriate selection of electrodes depends on the EMG
technique (e.g. physiological recordings versus evoked responses), the target muscle, signal reliability and
safety (table 4).

Respiratory EMG measurement is usually contaminated with ECG readings, which should be eliminated
[98, 99] or excluded from EMG measures. Moreover, respiratory EMG recordings, especially with surface
electrodes, are subject to electromagnetic interference [1, 94, 100], contamination from adjacent muscles
and changes in lung volume or posture [1, 101]. Diaphragm EMG can be quantified with a multi-pair
oesophageal electrode [102, 103], usually standardised to a maximal value (table 4). Given its noninvasive
nature, surface parasternal intercostal EMG has been proposed as an alternative measure of respiratory
motor output, respiratory load-capacity balance and, potentially, lung disease severity [104–107], but may
not be useful during exercise testing [108]. The single motor unit technique can accurately assess
respiratory motor output [93] and avoids many of the caveats related to contamination of EMG signals
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and normalisation. For evoked responses, normal values of phrenic nerve conduction time are available
using either electrical or magnetic stimulation (table 4) [1, 94, 109, 110].

The reliability of these respiratory EMG techniques is reported in table 4.

Respiratory EMG has been used to assess respiratory muscle control in cardiorespiratory disease at rest
(table S10) and during exercise (table S11). Briefly, diaphragm EMG is a surrogate of respiratory effort
[102, 111–113], it can be used to distinguish between central and obstructive sleep apnoea events
[111, 112, 114], to assess exertional breathlessness during exercise [64, 97, 115, 116] and, when combined
with VT recordings, it can be used to assess upper airway resistance [112, 117]. Given increased respiratory
motor output to the respiratory muscles in COPD [118, 119] and the relationship between EMG and lung
function, respiratory EMG has been taken as a marker for disease severity in stable COPD [103] and to
predict COPD exacerbations [105], early hospital admission [107] and the effect of medical interventions
[120–122].

In the ICU, recordings of the electrical activity of the crural diaphragm (EAdi) using a dedicated
nasogastric tube with EMG electrodes has greatly facilitated bedside monitoring of diaphragm activity
in both paediatric [123] and adult patients [124]. The EAdi signal can be used to trigger and
determine the level of assistance during mechanical ventilation, i.e. “neutrally adjusted ventilatory
assistance” [125]. The ratio of actual EAdi to maximum EAdi can be used to estimate the patient’s
effort to breathe [126]. EAdi is a promising tool for diaphragm activity monitoring, especially during
the weaning phase [127].

2.2. Electroencephalography
Respiratory-related cortical networks are not normally activated during resting breathing [128], carbon
dioxide stimulation [128], or the ventilatory response to exercise [129]. In contrast, these networks are
engaged during voluntary respiratory manoeuvres (apnoea, sniffing or hyperventilation) [128, 130, 131].
They are also engaged when the respiratory system is used for non-respiratory purposes, such as speech
[132]. Induction of respiratory neuroplasticity using repetitive TMS have suggested these networks exert a
tonic excitatory influence on breathing during wakefulness [133]. The respiratory-related
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FIGURE 4 Neurophysiological techniques to assess respiratory muscle control. Schematic of the neural
control of the human respiratory muscles. Multiple descending pathways integrate at the respiratory motor
neurons (with reflex afferent inputs) and determine the functional output of the muscles. Using
electromyography (EMG), the output can be measured during resting breathing, exercise and voluntary
manoeuvres or as evoked signals in response to transcranial magnetic stimulation (TMS) over the motor
areas or phrenic nerve stimulation (PNS) of the peripheral nerve. The output from cortical networks can be
measured using electroencephalography (EEG) as the presence of a bereitschaft (readiness) potential (BP)
indicates respiratory-related cortical activity. rms: root mean square; VT: tidal volume.
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TABLE 4 Characteristics of electromyography (EMG) techniques at rest

Tests (EMG techniques) Main variables Reference values and
discriminative values

Repeatability/reliability/
validity

Cautions/safety Setting (clinical,
research)

Remarks

EMG during breathing.
For surface and oesophageal
recordings, raw EMG or
integral/root mean square is
typically normalised to
maximal EMG measured
during maximal inspiratory
efforts (SNIP, PImax,
inspiration to TLC and MVV).
For the single motor unit
technique recorded with
needle or wire electrodes,
the peak discharge rate is
typically reported.

sEMGpara,
EMGpara%max

Reference values for men and
women, with and without a
mouthpiece, raw versus
normalised signal [106].

Negligible bias for raw and
normalised EMG between
recording sessions. Small
bias in raw EMGpara for
repeat measures in the
same recording session
[106].

Considered safe except for small
chance of skin abrasion during
electrode preparation.
However, signal is subject to
contamination from other
muscle activity and movement
of muscle.

Clinical, research Recordings of sEMGpara show
promise as a noninvasive
method to measure neural
respiratory drive [104].

sEMGscal NA Ensemble average of
80 breaths had
comparable timing of
inspiratory activity as
iEMG recordings for
3 participants [307].

Research sEMGscal has been proposed
as a monitoring tool in the
ICU [100].

sEMGdi NA for adults. Reference
values for children during
sleep [308].

Excellent reliability within
participants, and excellent
agreement between
occasions and between
observers, but data from
children who were
snorers [308].

Clinical, research Surface EMG over the chest
wall can be very susceptible
to contamination.

oesEMGdi%max Reference values for young
(<50 years) and old
(>50 years) subjects. No
difference if signal
normalised to max in
voluntary manoeuvres or
evoked response (i.e.
oesCMAPdi) [103]

Good repeatability between
recording sessions and
between observers [103].

Not for use in patients with
oesophageal varices.

Clinical,
research. Used
in neutrally
adjusted
ventilatory
assistance.

The preferred technique for
testing respiratory muscle
control during exercise given
its specificity and safety
advantages. Disadvantage of
the normalisation procedure
is that “maximal efforts” can
be, in fact, submaximal [309].

iEMGdi No data available for amplitude
during quiet breathing. This
measure is typically used to
compare activity between
experimental procedures
[310].

Usual considerations with needle
insertion (bleeding, pain and
infection). Risk of
pneumothorax can be
minimised with appropriate
precautions (e.g. ultrasound
and online audio/visual
feedback), but greater risk
during exercise due to
increased lung excursion and
chest wall movement.

Research Even intramuscular recordings
are susceptible to cross-talk
[311], although to a much
smaller degree than surface
recordings. Can be used for
single- or multi-unit
recordings.

SMUdi, SMUia Multiple studies in small
samples of healthy subjects
are available (refer to [93]
for references).

Excellent validity given
recordings do not need to
be normalised, are much
less susceptible to
recordings artefacts.

Safety considerations as above. Used in research,
and
occasionally
clinically, in
expert centres.

Recorded using needle or
selective wire electrodes. A
needle electrode can be
manipulated in the muscle to
sample populations of
respiratory motor units.

Continued
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TABLE 4 Continued

Tests (EMG techniques) Main variables Reference values and
discriminative values

Repeatability/reliability/
validity

Cautions/safety Setting (clinical,
research)

Remarks

Evoked signals
Measured as the compound
muscle action potential in
response to electrical
stimulation or magnetic
stimulation over the cervical
spinal cord (CMS) or
anterolaterally on the neck
(unilateral; UMS) of the
phrenic nerve(s).

sCMAPdi Typically, latency 6–8 ms,
depending on stimulation
technique or side [109, 312].
Amplitude of CMAP more
variable.

Latency is reproducible for
both electrical and
cervical magnetic
stimulation [109].

For magnetic stimulation, the
contraindications are listed in
the supplementary table.

Both clinical
investigation
and research.

Signal free of contamination if
phrenic nerve is activated
without co-stimulation of
other muscles. Usually used
to diagnose neuromuscular
diseases.

oesCMAPdi Using a multi-pair electrode,
latency is 6–8 ms [102, 313].
Latency shorter on right cf.
left side and shorter
compared to sCMAPdi from
costal diaphragm [313].
Amplitude of CMAP is more
variable [313].

Good reproducibility
between recording
sessions for latency [102,
313]. Good agreement
between electrical and
unilateral magnetic
stimulation for latency
and amplitude [102].

Safety considerations for
magnetic stimulation as above.
Oesophageal catheter not for
use in patients with
oesophageal varices.

Clinical,
research.

s: surface recordings; ia: intercostal/accessory muscles; oes: oesophageal; para: parasternal intercostal muscle of the second interspace; scal: scalene muscle; di: diaphragm; %max:
as a percentage of maximal EMG; SNIP: sniff nasal inspiratory pressure; PImax: maximal inspiratory pressure; TLC: total lung capacity; MVV: maximal voluntary ventilation; ICU: intensive
care unit; SMU: single motor unit; CMS: cervical magnetic stimulation; UMS: unilateral magnetic stimulation; CMAP: compound muscle action potential; NA: not applicable.
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cortico-subcortical networks are also engaged in situations where the breathing control system is
challenged. Thus, a cortical drive to breathe contributes to the maintenance of ventilatory activity during
wakefulness, in spite of profound hypocapnia [134]. Respiratory-related cortico-subcortical networks are
also activated when the respiratory system is faced with mechanical constraints [128, 135–138]. This
activation is not only sensory, but also motor. A motor respiratory-related cortical activity has been
described in various clinical situations. Patients with deficient respiratory automaticity due to Phox 2B
mutations (congenital central alveolar hypoventilation) exhibit respiratory-related cortical activity on their
electroencephalograms during resting breathing [139]. Detailed observations made in one such patient
showed better cognitive performance during mechanical ventilation than during unsupported breathing
[140]. This finding lends support of the actual role of the cortical activity in sustaining ventilation (“dual
tasking paradigm” [141]). A similar cortical activity has been described in patients with severe forms of
the obstructive sleep apnoea syndrome (OSAS) [142] (probably related to the inspiratory load induced by
upper airway abnormalities) and in patients with inspiratory muscle weakness due to ALS [143].
Experimental and clinical data are therefore consistent with the notion that the respiratory-related cortical
networks provide cortico-medullary co-operation when automatic breathing is compromised. Activation of
respiratory-related cortical networks in response to experimental loading is accompanied by respiratory
discomfort [137, 138, 143]. In patients with diaphragm dysfunction, alleviating dyspnoea by mechanical
ventilatory assistance silences respiratory-related cortical activity [143], suggesting a causative relationship.
These observations have led to the hypothesis that respiratory-related EEG activity could constitute a
surrogate for self-reported dyspnoea in patients unable to directly communicate with their caregivers, thus
forming the basis for a patient–ventilator interface [144]. Of note, the motor cortical activities related to
breathing are not synonymous of breathing discomfort (e.g. voluntary respiratory manoeuvres), and it
must be kept in mind that the brain correlates of breathing discomfort are numerous, very complex and
mostly sensory in nature (as exemplified by a host of specific studies that are beyond the scope of this
statement).

2.3. Transcranial magnetic stimulation
Transcranial magnetic stimulation (TMS) is a widely used noninvasive neurophysiological technique to
assess the excitability of the cerebral cortex and of the corticospinal tract in vivo (table 4) [145].

TMS causes no long-term adverse effects in healthy subjects. High frequency (1–50 Hz), high-intensity
repetitive TMS (rTMS), however, has the potential to induce epileptic seizures even in healthy individuals
[146]. This can be minimised by careful selection of subjects [147] and stimulus threshold, and strict
adherence to the available safety guidelines (table 5, table S12) [55].

The validity of TMS critically depends on the appropriate location of EMG electrodes [148] and control of
background muscle activity and noise. In the research laboratory, single- and paired-pulse TMS have been
used to document and describe the corticospinal pathway to the diaphragm at rest and during different
physiological conditions in healthy subjects (supplementary material) [149–151]. In the clinical field, TMS
has been used to document the involvement of the respiratory muscles in patients with neurological
conditions, such as stroke and multiple sclerosis [152–154] (table S13).

Test–retest reliability of TMS for respiratory muscles are not available. These data for limb muscles are
summarised in table 5.

Results mostly from upper airway and diaphragm muscles in response to TMS are documented.
Widespread disease-related alteration of corticomotor excitability (as documented by changes in a hand
muscle) could also indirectly influence respiratory muscle control and are summarised in the table S13.

In OSAS patients, genioglossus central motor conduction time (CMCT) closely correlates with severity of
disease [155]. An increase in cortical-motoneuronal excitability is observed in the genioglossus and
diaphragm muscles of awake OSAS patients [155, 156], but not for submental muscles [157, 158]. No
plasticity-related changes in genioglossus cortical activity is observed in response to rTMS trains [159, 160].

In stable patients with COPD, intracortical facilitation (ICF) of the diaphragm correlates with inspiratory
muscle strength, whereas intracortical inhibition correlates with arterial partial pressure of CO2 [161]. In
COPD, the corticospinal pathway to the diaphragm is more excitable and intracortical facilitation of the
diaphragm is markedly attenuated compared to healthy subjects [162].

In the ICU, diaphragm response to TMS in patients with central ventilatory paralysis (e.g. cervical spinal
cord lesions) predicts the recovery of spontaneous ventilation within 1 year [163]. In patients with stroke,
the respiratory system response to TMS represents a simple bedside technique to assess airway clearance
and evaluate aspiration risk [164].

For the use of TMS to evaluate interventions, please refer to table S13.
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TABLE 5 Characteristics of transcranial magnetic stimulation (TMS) paradigms and related measures

Tests (TMS
paradigms)

Main measures Definition Physiological significance Repeatability/reliability/validity Safety Setting
(clinical,
research)

Single-pulse
TMS

Noninvasive and painless neurophysiological
technique to evaluate the excitability of
motor cortical area and the cortical spinal
pathways conductivity through the
administration of magnetic stimuli over
the scalp.

Carries little risk beyond occasional
local discomfort at the site of
stimulation or a transient headache
in susceptible subjects. No change
in blood pressure, heart rate, EEG,
serum prolactin level, serum cortisol
level, or in a variety of memory,
cognitive, learning, sensory and
motor tests [314].

Motor evoked
potential (MEP)

Muscular response obtained after a single
TMS pulse applied over the contralateral
primary motor cortex at appropriate
stimulation intensity.

Integrity of the corticospinal tract
and excitability of the
corticospinal system.

Moderate to good reliability for MEP
amplitude of FDI muscle at rest
and under active condition; MEP
amplitude is more reliable at
120% intensity of stimulation than
those obtained at 100% [315].

Research

MEP latency Time interval between the application of the
TMS pulse on the motor cortex area and
MEP onset from the contralateral target
muscle; it reflects the conductivity of both
the central and peripheral nervous
systems, as well as neuromuscular
junctions and muscles.

Research

MEP amplitude Amplitude of MEP response measured
peak-to peak. It reflects the excitatory
state of output cells in the motor cortex,
nerve roots and the conduction along the
peripheral motor pathway to the muscles.

Research

Resting motor
threshold (RMT)

Lowest TMS intensity able to evoke MEPs in
the resting target muscle when
single-pulse stimuli are applied to the
motor cortex.

Reflects the excitability of a
central core of neurons, which
arises from the membrane
excitability and a balance
between inhibitory and
excitatory input from local
circuits.

Good reliability in FDI for short- and
long-term interval [315], also in
ADM [316] and APB, EDC, FCR
[317].

Research

Active motor
threshold (AMT)

Lowest TMS intensity required to obtain a
MEP response during a weak muscle
contraction.

Good to excellent short- and
long-term reliability in FDI [315].

Research

Cortical silent
period (CSP)

Period of suppression of EMG activity
following a twitch suprathreshold TMS
stimulus of a target muscle during a
sustained voluntary contraction of this
muscle.

Cortico (spinal) inhibitory
mechanisms, possibly GABAb
mediated (but not only).

Moderate to good reliability in ADM
[315] and FDI [317].

Research

Central motor
conduction time
(CMCT)

Latency difference between the MEPs
induced by TMS and by peripheral (motor
root) stimulation.

Reflects the integrity of the
cortical-spinal tract, from the
upper to the lower motor
neurons.

Research

Continued
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TABLE 5 Continued

Tests (TMS
paradigms)

Main measures Definition Physiological significance Repeatability/reliability/validity Safety Setting
(clinical,
research)

Paired-pulse
TMS

TMS paradigm to study intracortical
inhibitory and excitatory phenomena by
means of a conditioning subthreshold
stimulus preceding a suprathreshold test
stimulus applied at different interstimulus
interval.

Research

Intracortical
facilitation (ICF)

Paired-pulse TMS measure obtained with
long interstimulus interval where the
conditioning stimulus is followed by an
enhanced response with respect to the
test stimulus; it is modulated by multiple
neurotransmission pathways.

Expresses the activity of
glutamatergic excitatory
circuits

Poor reliability in ADM [315]. Research

Short latency
intracortical
inhibition (SICI)

Paired-pulse TMS measure obtained with
short interstimulus interval where the
conditioning stimulus is followed by an
inhibition with respect to the test stimulus;
it is attributed to an activation of inhibitory
neuronal system transmission.

Reflect the activity of GABAergic
inhibitory circuits

Good short-term and long-term
reliability under resting, not for
active conditions [315].

Research

Repetitive
TMS (rTMS)

rTMS Train of TMS pulses of the same intensity
applied at a given frequency to a given
brain area, that can transiently influence
the function of stimulated and connected
brain areas, mainly dependent on
stimulation frequency.

Even in normal subjects, prolonged,
high intensity, rTMS at 10–25 Hz
rates can produce partial seizures
with or without secondary
generalisation [146]. Short
inter-train intervals can cause
transient degradation in short term
verbal memory immediately
following rTMS [318].

Research

Low-frequency
rTMS

Trains of variable duration at ⩽1 Hz
stimulation frequency.

Depression of the excitability of
the stimulated regions,
possibly via LTD.

Research

High-frequency
rTMS

Trains of variable duration at ⩾1 Hz
stimulation frequency.

Increase of the excitability of the
stimulated regions, possibly via
LTP.

Research

Theta burst
stimulation
(TBS)

A form of complex rTMS trains combining
different frequencies (i.e. 50 Hz
pulse-trains repeated at a rate of 5 Hz)
with after-effects on cortical-spinal and
cortical-cortical excitability that may
reflect changes in synaptic plasticity.

Inhibition when higher than 1 Hz. Research

EEG: electroencephalography; LTD: long-term depression; LTP: long-term potentiation; ADM: abductor digiti minimimuscle; FDI: first dorsal interosseous; APB: abductor pollicis brevis;
EDC: extensor digitorum communis; FCR: flexor carpi radialis muscles.
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Section 3. Respiratory muscle imaging
3.1. Ultrasound
Since the publication of the previous ATS/ERS statement [1], numerous studies have reported on the use
of ultrasound to assess diaphragm dimensions and activity. With the increasing availability of ultrasound
at the bedside, this technique allows a simple, rapid and direct evaluation of the diaphragm that is more
sensitive than fluoroscopy for the identification of muscle activity [165].

The most frequently assessed variables using diaphragm ultrasound are: 1) static measurement of
end-expiratory diaphragm thickness (Tdi); 2) dynamic evaluation of the ratio of inspiratory to expiratory
diaphragm thicknesses, reported as thickening ratio (TR; inspiratory thickness/expiratory thickness) or
thickening fraction (TF; (inspiratory thickness − expiratory thickness)/end-expiratory thickness); and
3) diaphragmatic excursion [166]. Measurements of Tdi and TF are performed by placing a high-frequency
linear probe at the level of the zone of apposition, while diaphragm excursion is measured using a
curvilinear probe placed in the subcostal region and recording diaphragm movements in M-mode
(figure 5).

3.1.1. Diaphragm thickness
In healthy subjects at rest, intra- and inter-observer reliability of Tdi are high [167–171] and ultrasound
estimates of Tdi are correlated to direct anatomical measurements [168]. The lower limit of normal for Tdi
has been reported to be 0.15 cm in healthy subjects, with a wide baseline range of values [167]. Similar
values have been reported for patients with COPD [172]. It is unclear whether a Tdi value below this
threshold can be used to identify diaphragm dysfunction. Tdi does not seem to change with age [167] but
can be influenced by posture [173], stature [171, 174] and body composition [171, 175]. In addition, in studies
of patients with diaphragm weakness, a large proportion of subjects had Tdi values of 0.15 cm [176–178].
However, the temporal evolution of Tdi in these patients was related to the change in VC in those with
recovery of diaphragm function [176]. This observation suggests that Tdi can be used to monitor the
evolution of diaphragm weakness [176]. In mechanically ventilated patients, Tdi is reproducible [179, 180].
Tdi is not correlated with Pao,tw when patients are receiving assist control ventilation or pressure support
ventilation [181]. Tdi is a poor predictor of weaning outcome [182–184]. Finally, over the course of
mechanical ventilation, Tdi can decrease, increase or remain unchanged [185, 186].

3.1.2. Diaphragm thickening fraction and ratio
The measurement of TF is reproducible [179], with a reported lower limit of normal of 20% in healthy
subjects and patients with COPD [167, 172]. A TF around 20%, however, is possibly more closely
associated with near complete paresis rather than partial dysfunction, as the mean values for TF in healthy
subjects can frequently exceed 100% [167].

Diaphragmatic contractions produce both muscle shortening and thickening. The correlation between
diaphragm thickening and diaphragm effort, however, is tenuous: ultrasound measurements of diaphragm

Frequency 15 MHz

Resolution 100 µm

Depth 3 cm

a) b)

Zone app.

Dome

Transducer

FIGURE 5 Diaphragm ultrasound assessment. a) When measuring diaphragm thickness and thickening
fraction, the use of a linear, high-frequency probe is suggested. The probe is positioned in the sagittal-oblique
position at the level of the zone of apposition, and image scanning begins at the mid-axillary line. When
evaluating diaphragm excursion, use of a curvilinear, low-frequency probe is preferable. The probe is
positioned in the sub-hepatic region, with the beam oriented cephalad and posteriorly, aiming at the most
cephalad aspect of the diaphragmatic dome. b) M-mode image of diaphragm thickening during inspiration.
End-expiratory and end-inspiratory diaphragm thicknesses can be directly measured and thickening fraction
can be determined.
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thickening explain only one third (or less) of the variability in inspiratory effort [180, 187, 188]. This is
not surprising, considering that thickening is a one-dimensional measurement, whereas inspiratory effort
results from an active three-dimensional displacement of muscle volume. In addition, the extent of
diaphragm thickening for a given level of inspiratory effort varies considerably between subjects and the
reproducibility of the measurement is weak (reproducibility coefficients range from 16% to 27%) [187].

In critically ill patients receiving pressure support ventilation, TF <29% has been associated with
diaphragm dysfunction, the latter being defined as Pao,tw <11 cmH2O [181]. In addition, diaphragm TF
moderately correlates to indices of neural respiratory drive such as P0.1 [188] and has been reported as a
possible predictor of weaning outcome [181, 182, 189] and duration of mechanical ventilation [181, 189].
In patients with acute exacerbation of COPD, preliminary data suggests that TF is related to failure of
noninvasive ventilation and mortality [190]. Measurements of expiratory and inspiratory diaphragm
thickness can be performed using either B- or M-mode ultrasound. The use of M-mode offers the
theoretical advantage of making the recording of both variables in a single inspiratory/expiratory cycle
easier, and the manual measurement of diaphragm thickness on the same ultrasound frozen image.
Whether this translates into a clinically significant difference in measurement compared with B-mode
remains to be determined. No studies have yet evaluated TF or TR during exercise.

3.1.3. Diaphragm excursion
Excursion of the right diaphragm has high intra- and inter-observer reliability [191, 192] and its lower
limit of normal is 3.6 cm in women and 4.7 cm in men during maximal inspiratory efforts [191]. From a
technical point of view, measurement errors may occur when the displacement of the diaphragm is not
optimally aligned with the M-mode plane, but angle-independent M-mode sonography may mitigate this
effect [193].

Diaphragm excursion is sensitive to changes in respiratory pattern [194], is related to the
volume-generating capacity of the diaphragm (measured using VC) following abdominal surgery [195] and
has been used to identify diaphragm weakness in the setting of acute exacerbation of COPD [196] and
acute stroke [197]. In intubated patients, diaphragm excursion is moderately related to Pdi [198] and,
possibly, to weaning outcome [192, 199]. In children, ultrasound imaging has been used to assess
anatomical defects of the diaphragm (lobulated-shaped hemidiaphragms, focal diaphragmatic eventration,
diaphragmatic hernia) and to document paradoxical movements of the diaphragm (supplementary
material) [200].

3.2. Optoelectronic plethysmography
Optoelectronic plethysmography (OEP) is an established technique that allows tidal changes in the volume
of the chest wall and its compartments to be measured (figure 6) [201, 202]. By using this technique,
investigators reported that patients with more severe COPD consistently experience dynamic
hyperinflation during incremental exercise, while other patients, specifically those with a greater expiratory
flow reserve at rest, adopted at least two significantly different patterns of change in end-expiratory volume
of the chest wall [203–205]: some showed a progressive significant increase in end-expiratory volume of
the chest wall (“early hyperinflators”) and others showed an increase only at higher levels of exercise (“late
hyperinflators”). Three different, distinct patterns of breathing and chest wall volume displacement were
found in patients with severe COPD, interstitial pulmonary fibrosis and cystic fibrosis to cope with chronic
respiratory failure [206].

OEP has been used to evaluate a variety of NMDs, such as Duchenne [207–209], limb girdle and Becker
muscular dystrophies, facioscapulohumeral dystrophy [210] and ALS [211]. OEP has also been used to
assess the effects of different surgical techniques (such as laparoscopic surgery) on chest wall kinematics
and inspiratory muscle activity [212], Nuss technique for pectus excavatum [213], diaphragm plication for
unilateral diaphragm paralysis [214], and diaphragm repair in congenital diaphragmatic hernia [215].
More recently, OEP has been used to evaluate the effects on chest wall kinematics of several interventions,
such as air stacking [216], breath stacking [217], stretching [218], incentive spirometry [219], inspiratory
loaded breathing [220] and rehabilitation [221]. OEP can be used to monitor tidal breathing and
respiratory muscle function in newborns [222], in children with spinal muscle atrophy type 1 and type 2
[223] and in children and young adults with Duchenne muscular dystrophy [207, 208].

3.3. Other investigations
Chest radiography and computed tomography have been used to assess the position of the diaphragm,
particularly to identify diaphragm elevation secondary to weakness or paralysis in patients with
myopathies, neuropathies and injured hemidiaphragm [224]. Chest fluoroscopy, although highly ionising,
has been used to identify decreased or paradoxical diaphragm motion.
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Two- and three-dimensional magnetic resonance imaging (MRI) is being increasingly used, particularly in
neuromuscular diseases [224], to assess muscle size, structure and altered function by using different
tissue-weighting (T1, T2 and proton density). Two-dimensional MRI can assess qualitatively muscular
atrophy on axial and coronal images and measure the cranio-caudal diaphragm movement. Dynamic MRI
provides information on the motion of the chest wall and the diaphragm on sagittal images [225]. Given
the paucity of published studies on this topic, it is difficult to draw conclusions on this imaging tool;
further studies are needed to evaluate the validity, precision, reproducibility, prognostic value and
responsiveness to interventions of dynamic MRI of the diaphragm.

Structured light plethysmography (SLP) is another emerging imaging tool. SLP is a non-contact,
noninvasive method to assess breathing pattern [226]. The technique is based on the stereoscopic analysis
of respiratory-related distortions of a black and white chequered pattern projected on the chest wall and
abdomen [226–228]. SLP has been validated in healthy subjects and in patients [226–229]. In a recent
study, NIERAT et al. [226] reported that SLP can detect differences in breathing pattern in COPD compared
with healthy controls. In the same study, SLP allowed measurement of ventilatory activity while preserving
resting tidal breathing variability, reducing instrumental observer effect and avoiding any disruptions in
breathing pattern induced by the use of the pneumotachograph-mouthpiece-noseclip combination. SLP
allows a detailed compartmentalised analysis of thoraco-abdominal behaviour, which is not the case for
wearable devices [226]. In children with asthma, SLP can differentiate those with and without airway
obstruction, and may identify responses to bronchodilator [230]. Further research is, however, required to
confirm the clinical applications of SLP.

Section 4. Respiratory muscle structure, perfusion and metabolism
Several methodological approaches can provide a comprehensive assessment of the mechanisms regulating
respiratory muscle blood flow and oxygen delivery in relation to oxidative metabolic demand and
mitochondrial function, as well as the consequences of oxidative stress and inflammation (table 6). These
techniques have the potential to be used for monitoring interventions aimed at restoring respiratory
muscle function in the ICU and the rehabilitation setting.

4.1. Near-infrared spectroscopy
A decade ago, a technique combining near-infrared spectroscopy (NIRS) with the light absorbing tracer
dye indocyanine green (ICG) was employed to measure intercostal muscle blood flow (IMBF) using Fick’s

Markers’ position/

displacement

Motion analyser

TV camera

Geometric model of 

the chest wall

Chest wall compartmental 

volumes/volume changes

(Vrc,p, Vrc,a, Vab, Vcw)

Volume calculation

Pulmonary 
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Abdominal 

ribcage

Abdomen

Markers

FIGURE 6 Optoelectronic plethysmography. A number of reflective markers are positioned on the trunk of the
subject in selected anatomical reference sites of the ribcage and the abdomen. A set of cameras placed
nearby the subject under analysis and dedicated stereo-photogrammetric techniques allow measuring the
position (three-dimensional coordinates) and motion of the markers. A closed surface is defined by
connecting the points and the volume enclosed by the thoraco-abdominal surface and its different parts is
computed using Gauss’ theorem. The chest wall is typically modelled as being composed of three different
compartments: pulmonary ribcage (rc,p), exposed on its inner surface to pleural pressure, abdominal ribcage
(rc,a), and the abdomen (ab), the latter both exposed to abdominal pressure. Total chest wall volume (Vcw) is
the sum of the volume of these three compartments (Vrc,p, Vrc,a and Vab).
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principle. GUENETTE et al. [231] were the first to quantify IMBF in healthy subjects during resting isocapnic
hyperpnoea at different fractions of MVV. They reported that as ventilation rose, IMBF significantly
correlated with the increase in cardiac output, WOB and Pdi, suggesting that the NIRS-ICG technique is a
sensitive indicator of IMBF in healthy humans. Similar results have been reported by Vogiatzis and
co-workers, employing the same NIRS-ICG technique to measure IMBF in healthy subjects [232] and
COPD patients [233].

Absolute IMBF measurements via the NIRS-ICG technique require arterial cannulation. For this reason,
an alternative method was proposed to measure relative changes in muscle perfusion from rest, namely the
blood flow index (BFI), requiring only venous catheterisation for the injection of ICG (figure 7) [234].

HABAZETTL et al. [234] compared BFI values obtained from the seventh intercostal space against absolute
muscle blood flow determined using the NIRS-ICG technique during cycling in healthy subjects. The
investigators reported a very good agreement between BFI and NIRS-ICG techniques in healthy subjects
during cycling [234], and also (by retrospective data analysis) in patients with COPD (figure 7) [233].
GUENETTE et al. [235] showed that BFI of intercostal and sternocleidomastoid muscles during isocapnic
hyperpnoea was strongly correlated with WOB and surface EMG, thus confirming that the BFI technique
provides a minimally invasive and technically less demanding alternative to NIRS-ICG for measuring
respiratory muscle perfusion in humans at rest and during exercise.

4.2. Oxygen cost of breathing
The oxygen cost of breathing is an index of the energy required for ventilation. For more detailed
information on methods of assessment please refer to the supplementary material. Oxygen cost of
breathing was shown to be increased in women [236, 237] and in obesity [238, 239], post-operative
patients [240], COPD [240, 241], cystic fibrosis [242, 243], children with asthma [244], sarcoidosis [245]
and chronic heart failure [246, 247]. In these conditions, the increased oxygen cost of breathing may
contribute to increased energy cost during activities of daily living adding, particularly in diseases
imposing a ventilator or cardiac constraint, an extra contribution to the reduced exercise capacity. Several
interventions have been used in different patient populations to reduce WOB, which has a potential
impact on reducing the oxygen cost of breathing, namely, invasive and noninvasive ventilation [248–250],
high flow nasal oxygen [248, 251], ventilation with heliox [252], respiratory muscle training [253, 254] and
exercise training [255].

4.3. Biopsy (specificities for respiratory muscles)
In recent years, respiratory muscles have been studied through the analyses of the costal diaphragm, with
very restricted access, and only via thoracotomy performed for clinical reasons (mainly lung cancer and
lung volume reduction surgeries). During thoracotomy, parasternal and diaphragm biopsy specimens have
been obtained from the third interspace and the anterior costal diaphragm lateral to the insertion of the
phrenic nerve, respectively [256–260]. Additionally, other studies have been based on the analysis of the

TABLE 6 Laboratory techniques for evaluation of respiratory muscle structure, perfusion and metabolism

Techniques Invasiveness Physiology laboratory
required

Biology laboratory
required

Purpose

Near-infrared spectroscopy None Yes No Muscle blood flow
Oxygen cost of breathing None Yes No Ventilation, oxygen uptake
Access to costal diaphragm muscle Yes, thoracotomy Yes, always in

surgery room
No Biological and histological

analyses
Access to parasternal muscles Yes, thoracotomy Yes, always in

surgery room
No Biological and histological

analyses
Access to external intercostals Yes, open biopsy techniques Yes, possible in

surgery room
No Biological and histological

analyses
Immunohistochemical or

immunofluorescence analyses
No Yes Muscle fibre type and

morphometry
Mitochondrial respiratory chain

evaluation (respiration procedures)
None No Yes Quantification of mitochondrial

respiration (oxygen consumption)
Immunoblotting procedures None No Yes Quantification of protein levels in

muscle specimens
Quantitative real-time PCR None No Yes Quantification of gene expression

levels in muscle specimens
Specific activity assays including

mitochondrial enzyme activities
None No Yes Quantification of activity levels of

enzymes in muscle specimens
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external intercostal muscle following procedures involving an open biopsy technique [257, 258, 261–265].
Biopsies from the external intercostals have usually been taken along the anterior axillary line at the sixth
intercostal space, as detailed in previous studies [257, 258, 261–265]. In patients with chronic respiratory
conditions, limb muscles are more severely affected than respiratory muscles, which need to overcome the
increased inspiratory loads and may exhibit adaptive features [266].

4.4. Typology
Respiratory muscles undergo a series of structural changes in lung diseases. These changes have been
extensively studied in patients with COPD, in which the diaphragm shows increased type I fibres [267],
favouring aerobic metabolism [268]. Structural changes in the respiratory muscles (injury and regeneration
cycles) depend mainly on the effect derived from increased ventilatory loads [269, 270]. Increases in
capillary and mitochondria numbers and sarcomere length have also been demonstrated [271], along with
sarcomere and sarcomeric damage and greater friability of diaphragm [272]. Diaphragm atrophy in
patients with COPD has been reported by some, but not all, investigators [256, 259, 273, 274]. Changes in
the proportions of fibre types have also been observed in the parasternal and external intercostal muscles
of COPD patients [257, 275]. In the latter muscles, an increase in capillary numbers was also described
[276], together with fibre atrophy [277]. Respiratory muscle training increased fibre sizes and proportions
of type I fibres [278]. In OSAS patients, increased proportions of type I fibres have been reported in the
intercostal muscles [262], while no data is available for the diaphragm. Prolonged mechanical ventilation
induces sarcomere damage and fibre atrophy in the diaphragm, with no relevant changes in fibre type
proportions [279, 280].

4.5. Mitochondrial function
In rats, mitochondrial respiratory rates are lower in the diaphragm than in peripheral muscles [281]. In
mice, hypoxia differentially affected peripheral and respiratory muscles with decreased mitochondrial
content due to reduced mitochondrial biogenesis and increased mitophagy [282].

Mitochondrial function is altered in patients with COPD [260, 283, 284]. In these patients, mitochondria
isolated from intercostal muscles demonstrate electron transport blockade and excessive production of
reactive oxygen species, similar to effects found in the vastus lateralis [259, 284]. In the diaphragm, overall
mitochondrial respiratory chain capacity was increased and had a higher efficiency in patients with
moderate [285] and severe [286] COPD than in healthy controls. In patients with COPD the oxidative
capacity of the diaphragm is greater than that of the peripheral muscles [258].

Mitochondrial function and content are impaired in patients with sepsis [287]. In turn, animal models of
prolonged mechanical ventilation demonstrate only minor changes in oxidative phosphorylation coupling
in diaphragmatic mitochondria [288]. Attempts to improve mitochondrial function using anabolic steroids
failed in a hamster model of emphysema [289]. Increased mitochondrial enzyme activity was shown in
rodent diaphragm in response to endurance training [290].
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relaxation during cycling. Low-pass filtering with a cut-off frequency of 0.5 Hz produced the smoothed curve (black line) that was used for blood
flow index (BFI) calculation. Data points at 10 and 90% of ICG concentration peak are indicated, and an example of BFI calculation is given.
Reproduced with permission from the publisher [234]. b) Regression analysis of individual BFI assessed by the NIRS-ICG method versus actually
measured muscle blood flow assessed by Fick’s principle at different levels of minute ventilation recorded during isocapnic hyperpnoea trials for
the intercostal muscles in chronic obstructive pulmonary disease. IMBF: intercostal muscle blood flow. Data calculated from [233].
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4.6. Oxidative stress
Increased oxidant production has been reported in mitochondria and membrane compartments of
diaphragm fibres in patients with severe COPD [256, 259]. In several studies [256, 259, 291, 292], the
diaphragm of these patients exhibited increased levels of oxidative stress. Such levels inversely correlated
with global respiratory and diaphragm muscle function among patients with more severe disease [256,
259]. Contractile actin and myosin, creatine kinase, and carbonic anhydrase-3 are oxidatively modified in
the diaphragm of patients with severe COPD, while protein content of myosin [259, 291, 292] and creatine
kinase and its activity are reduced [259]. Nonetheless, in saponin-skinned diaphragm and intercostal
muscle fibres [265, 286], creatine kinase activity levels do not differ between severe COPD and healthy
controls. In external intercostals of COPD patients [264] and in those with OSAS, oxidative stress levels
are increased and treatment with continuous positive airway pressure for 6 months does not reduce those
levels [262]. In external intercostal muscles of patients with severe sepsis, oxidative stress levels do not
differ from those in controls [264]. Oxidative stress in the diaphragm of critically ill patients receiving
mechanical ventilation is increased compared to controls [280, 293, 294]. In elderly subjects, markers of
oxidative stress are increased in the external intercostals compared to young controls [261].

4.7. Inflammation
Systemic inflammation is a contributor of muscle dysfunction in COPD [295]. In contrast, local
inflammation does not play a role in COPD muscle dysfunction: inflammatory cell counts were very low
in the diaphragm and external intercostals of patients with severe COPD with preserved body composition
[257]. Expression of mRNA and protein content of tumour necrosis factor alpha and interleukin-6 are
greater in the external intercostals of patients with severe COPD and normal weight than in healthy
controls, while muscle mRNA levels of CD18 panleukocyte marker do not differ between patients and
controls [296]. In patients with severe sepsis, inflammatory markers are increased in the external
intercostals compared to controls [263].

Collectively, respiratory muscle dysfunction in patients with COPD is the result of multiple deleterious
factors such as lung hyperinflation (mechanical disadvantage), gas exchange abnormalities, impaired
bioenergetics (increased cost of breathing) and biological mechanisms (oxidative stress), and structural
abnormalities (sarcomere damage and atrophy), while inflammation does not seem to play a major role
[295]. This scenario coexists with adaptive features including a switch towards a more oxidative phenotype
(predominance of slow-twitch fibres, increased mitochondrial density and myoglobin content), probably
in response to increased mechanical loads.

Conclusion
Respiratory muscle dysfunction is a major clinical concern in a variety of conditions, from respiratory
diseases to NMDs, critically ill patients, sports medicine and paediatric populations. Assessment of
respiratory muscle function is therefore of critical importance for patient diagnosis, follow-up and for
evaluating the effect of therapeutic interventions aimed at improving respiratory function. 17 years after
the 2002 ATS/ERS statement on respiratory muscle testing [1], a growing body of literature has emerged
and has been discussed in this document, which provides clinicians and investigators with the latest
knowledge on this topic. In addition to historical evidence on respiratory muscle strength, endurance and
fatigue assessments, new information on imaging technologies and respiratory muscle assessment during
exercise have provided important insights into respiratory muscle function, including its integration with
brain and cardiovascular function, dyspnoea and exercise tolerance. This document, which has involved
experts in the field of respiratory medicine and physiology on the topic of respiratory muscle testing at rest
and during exercise, is intended to open up new perspectives in both clinical and research settings. Despite
the remarkable advances in respiratory muscle and lung mechanics assessment in the past few decades,
this body of knowledge has not been fully translated to the clinical care of individual patients. Although
this state of affairs is likely explained by multiple reasons, it is noteworthy that less and less time has been
devoted to training in the administration and interpretation of the more advanced tests of respiratory
muscle function worldwide. This contributes to a vicious circle in which fewer pulmonologists master the
use of less common devices that are available only in specialised centres. To fight this regrettable situation,
it seems apparent that new generations of pulmonologists should (again) be intensively exposed to clinical
physiology concepts and practices. To reach this intent, the key relevance of the leading societies in our
field (e.g. the European Respiratory Society, American Thoracic Society and American College of Chest
Physicians) cannot be underestimated.
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